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Capability Safety for
Capability Machines



Can we verify 
this on the spec?

Hardware Guarantees
● Capabilities are unforgeable
● Permissions are checked
● Capability manipulation is safe

Capability Machines

https://www.draw.io/?page-id=3uSGAcyc2pQ5u1AHjss6&scale=auto#G1mznkMV_HFWy5zmaKljnpJ5bVN6vKwhhN


µSail code for execute_store

Example: Store Instruction

Checks are critical!!Universal Contract

"Reasoning about a Machine 
with Local Capabilities.”
Skorstengaard et al, TOPLAS 42.1 (2019).



safe(cap(p,b,e,a))
  ⇔ [b,e[ ⊆ dom(m)
  ∧ (R ⊑ p =>
      ∀ a ∈ [b,e[. safe(m(a)))
  ∧ ...

 

RW R RW

Universal Safety Contract

Memory subset m

R RW
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Katamaran
Verified Semi-Automated 

Separation Logic Verifier for Sail
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Katamaran Workflow

COQ

ISA Spec
(µSail)

Predicates

Contracts

Lemmas

Symbolic
Executor

Verification 
Conditions

Error Report

Coq 
Tactics

VC Proofs

Heuristics



COQ

Katamaran Structure

Symbolic
Executor

VeriFast / MFVF

VST / MSL

Bedrock / 
MirrorShard

Iris

Program Logic 
Interface

SL Interface

Operational 
Semantics



COQ

ISA Property 
Proof

0%

Symbolic Execution 
Soundness

0%

Katamaran Structure

Symbolic
Executor

VC Proofs

Program Logic 
Interface

SL Interface

Operational 
Semantics

Program Logic Instance

Memory Instance

Program Logic 
Soundness

Lemmas / Ext. Functions

Soundness

90%



µSail Language Features

External functions

Type polymorphismPrimitive types
(Bool, enum, int, string,...)

Mutable variables

Return, exceptions, 
while-loops

Bitvectors Int/bool/order 
polymorphism

Complex l-valuesScattered Definitions Bidirectional mappings

Structured types
(List, records, unions)

Registers

Supported Unsupported / 
Maybe planned Not planned



● Shallow embedded syntax

● Monadic semantics
(free prompt monad /
 state monad)

● Prover’s assertion logic

● LTac / Eisbach

● Deeply embedded syntax

● Operational semantics

● Embedded separation logic

● Gallina (reflective proofs)

Sail Proof Support Katamaran



Future Work



Short Term Future

Case Study: Register only capabilities

Program Logic Soundness

Symbolic Execution 
Soundness

Automation



Mid Term Future

Linear capabilities
Skorstengaard, Devriese & Birkedal. 
"StkTokens: Enforcing well-bracketed 
control flow and stack encapsulation 
using linear capabilities." POPL’19.

REDFIN - REDuced instruction 
set for Fixed-point & INteger 
arithmetic
Mokhov, Lukyanov & Lechner. “Formal 
Verification of Spacecraft Control 
Programs.” Haskell’19.

Language Features
Bitvectors

Local capabilities
Skorstengaard, Devriese & Birkedal. 
"Reasoning about a Machine with Local 
Capabilities.” TOPLAS 42.1 (2019).

Uninitialized capabilities
Huyghebaert, Van Strydonck, Keuchel & 
Devriese. “Uninitialized Capabilities.” 
arXiv:2006.01608 (2020).

Program Logic Instance
Iris?



Long Term Future

CHERI
Woodruff et al. “The CHERI capability model: Revisiting RISC 
in an age of risk.” ISCA’14.

Intel SGX
McKeen et al. “Innovative instructions and software model for 
isolated execution.” HASP’13.

Secure Compilation
Patrignani, Ahmed & Clarke. “Formal approaches to secure 
compilation: A survey of fully abstract compilation and 
related work.” CSUR 51.6 (2019).

Sail Integration

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf
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