
Semi-Automated Verification of
Instruction Set Architectures

Katamaran

Dominique
Devriese

Steven
Keuchel

Georgy
Lukyanov

June 16, 2020

CHERI Intel SGX ARM TrustZone

Hardware (Assisted) Security

CHERI
“Rigorous engineering for
hardware security: Formal
modelling and proof [..].”
Nienhuis et al. IEEE S&P’20.

PUMP
“Micro-policies: Formally
verified, tag-based security
monitors.”
De Amorim et al. IEEE S&P’15.

“Reasoning about object
capabilities with logical relations
and effect parametricity.”
Devriese, Birkedal & Piessens. EuroS&P’16.

“Robust and compositional
verification of object
capability patterns.”
Swasey, Garg & Dreyer. OOPSLA’17.

“Beyond good and evil:
Formalizing the security
guarantees of compart-
mentalizing compilation”.
Juglaret et al. CSF’16.

“Linear Capabilities for Fully
Abstract Compilation of
Separation-Logic-Verified Code.”
Van Strydonck, Piessens & Devriese. ICFP’19.

"Reasoning about a Machine
with Local Capabilities.”
Skorstengaard et al, TOPLAS 42.1 (2019).

Program Security

Hardware (Assisted) Security

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202005oakland-cheri-formal.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202005oakland-cheri-formal.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202005oakland-cheri-formal.pdf

CHERI
“Rigorous engineering for
hardware security: Formal
modelling and proof [..].”
Nienhuis et al. IEEE S&P’20.

PUMP
“Micro-policies: Formally
verified, tag-based security
monitors.”
De Amorim et al. IEEE S&P’15.

“Reasoning about object
capabilities with logical relations
and effect parametricity.”
Devriese, Birkedal & Piessens. EuroS&P’16.

“Robust and compositional
verification of object
capability patterns.”
Swasey, Garg & Dreyer. OOPSLA’17.

“Beyond good and evil:
Formalizing the security
guarantees of compart-
mentalizing compilation”.
Juglaret et al. CSF’16.

“Linear Capabilities for Fully
Abstract Compilation of
Separation-Logic-Verified Code.”
Van Strydonck, Piessens & Devriese. ICFP’19.

"Reasoning about a Machine
with Local Capabilities.”
Skorstengaard et al, TOPLAS 42.1 (2019).

Program Security

Hardware (Assisted) Security

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202005oakland-cheri-formal.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202005oakland-cheri-formal.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202005oakland-cheri-formal.pdf

Capability Safety for
Capability Machines

Can we verify
this on the spec?

Hardware Guarantees
● Capabilities are unforgeable
● Permissions are checked
● Capability manipulation is safe

Capability Machines

https://www.draw.io/?page-id=3uSGAcyc2pQ5u1AHjss6&scale=auto#G1mznkMV_HFWy5zmaKljnpJ5bVN6vKwhhN

µSail code for execute_store

Example: Store Instruction

Checks are critical!!Universal Contract

"Reasoning about a Machine
with Local Capabilities.”
Skorstengaard et al, TOPLAS 42.1 (2019).

safe(cap(p,b,e,a))
 ⇔ [b,e[⊆ dom(m)
 ∧ (R ⊑ p =>
 ∀ a ∈ [b,e[. safe(m(a)))
 ∧ ...

RW R RW

Universal Safety Contract

Memory subset m

R RW

Verifiers

Program (C)
+ Contracts

SmallFoot VeriFast

SMT
Solver

Verification
Conditions

Verified Verifiers

COQ

Program
(Verifiable C)
+ Contracts

VST

Program
(Bedrock IR)
+ Contracts

Bedrock

Coq
Tactics

Verification
Conditions

Katamaran
Verified Semi-Automated

Separation Logic Verifier for Sail

CoqIsabelle HOL4

MIPS

CHERI-RISC-V

RISC-V

CHERI-MIPS

ARMv8.5-A
(from ASL) Intel x86POWER-2.06B

Emulator
(C)

Emulator
(Ocaml)

Docs
(LaTeX)

SAIL

Sail DSL for ISA Specifications

LEM

CoqIsabelle HOL4

SAIL

Sail DSL for ISA Specifications

LEM

Katamaran
(Coq)

?

?

Katamaran

ISA Spec
(Sail)

COQ
ISA Spec

(µSail)

Katamaran
backend

0%

Katamaran Workflow

COQ

ISA Spec
(µSail)

Predicates

Contracts

Lemmas

Symbolic
Executor

Verification
Conditions

Error Report

Coq
Tactics

VC Proofs

Heuristics

COQ

Katamaran Structure

Symbolic
Executor

VeriFast / MFVF

VST / MSL

Bedrock /
MirrorShard

Iris

Program Logic
Interface

SL Interface

Operational
Semantics

COQ

ISA Property
Proof

0%

Symbolic Execution
Soundness

0%

Katamaran Structure

Symbolic
Executor

VC Proofs

Program Logic
Interface

SL Interface

Operational
Semantics

Program Logic Instance

Memory Instance

Program Logic
Soundness

Lemmas / Ext. Functions

Soundness

90%

µSail Language Features

External functions

Type polymorphismPrimitive types
(Bool, enum, int, string,...)

Mutable variables

Return, exceptions,
while-loops

Bitvectors Int/bool/order
polymorphism

Complex l-valuesScattered Definitions Bidirectional mappings

Structured types
(List, records, unions)

Registers

Supported Unsupported /
Maybe planned Not planned

● Shallow embedded syntax

● Monadic semantics
(free prompt monad /
 state monad)

● Prover’s assertion logic

● LTac / Eisbach

● Deeply embedded syntax

● Operational semantics

● Embedded separation logic

● Gallina (reflective proofs)

Sail Proof Support Katamaran

Future Work

Short Term Future

Case Study: Register only capabilities

Program Logic Soundness

Symbolic Execution
Soundness

Automation

Mid Term Future

Linear capabilities
Skorstengaard, Devriese & Birkedal.
"StkTokens: Enforcing well-bracketed
control flow and stack encapsulation
using linear capabilities." POPL’19.

REDFIN - REDuced instruction
set for Fixed-point & INteger
arithmetic
Mokhov, Lukyanov & Lechner. “Formal
Verification of Spacecraft Control
Programs.” Haskell’19.

Language Features
Bitvectors

Local capabilities
Skorstengaard, Devriese & Birkedal.
"Reasoning about a Machine with Local
Capabilities.” TOPLAS 42.1 (2019).

Uninitialized capabilities
Huyghebaert, Van Strydonck, Keuchel &
Devriese. “Uninitialized Capabilities.”
arXiv:2006.01608 (2020).

Program Logic Instance
Iris?

Long Term Future

CHERI
Woodruff et al. “The CHERI capability model: Revisiting RISC
in an age of risk.” ISCA’14.

Intel SGX
McKeen et al. “Innovative instructions and software model for
isolated execution.” HASP’13.

Secure Compilation
Patrignani, Ahmed & Clarke. “Formal approaches to secure
compilation: A survey of fully abstract compilation and
related work.” CSUR 51.6 (2019).

Sail Integration

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf

Thanks for your
Attention!

https://github.com/skeuchel/katamaran

https://github.com/skeuchel/katamaran

