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1 Introduction

An instruction set architecture (ISA) is an abstract speci-
fication of the syntax and semantics of machine code. It
defines an envelope of allowed behaviour for CPU designers
and a set of assumptions that software designers can rely
on. Instead of informal prose and pseudo-code [e.g. 1], rig-
orous, executable formalisations of ISAs disambiguate the
contract and improve testability and support modification,
experimentation and formal study [e.g. 3, 12, 19]. Such for-
malisations are a crucial requirement for formal verification
of both hardware [e.g. 8] and software [e.g. 15].

We are interested in verifying that critical safety guaran-
tees of the ISA are upheld by the semantics of all instructions.
Our long-term goal is to verify security guarantees offered by
ISAs, specifically features like Intel SGX [16], virtual memory
or capability machines [6]. We want to verify these proper-
ties in a form that can be used to reason about programs, as a
way to ultimately verify security properties of real systems.

For achieving this, we take inspiration from recent for-
mulations of capability safety in capability machines and
high-level languages [10, 20, 22, 24]. Contrary to, for example,
Nienhuis et al. [18], such techniques directly enable reason-
ing across encapsulation boundaries. These approaches use
(essentially) a general purpose program logic, and formu-
late capability safety as a universal contract that automati-
cally holds for arbitrary programs. The universal contract
expresses guarantees provided by the machine and can be
used for manually verifying trusted programs that interact
with untrusted programs. We believe that this approach gen-
eralises well beyond capability safety.

However, proving such results about a language or ISA
currently requires a lot of manual reasoning. For example,
an in-progress CoQ formalisation of capability safety for
a simple capability machine with 19 instructions requires
about 17kroc of proofs [11]. Real ISAs can be much larger,
for example 30krLoc of SAIL specifications for ARMv8.3 [3].
Consequently, scaling up ISA property proofs raises impor-
tant proof engineering challenges. For the verification effort
to scale reasonably in terms of the size and complexity of
the specification and for making it robust to changes, proof
automation is a necessity. Uninteresting parts of the proof
should be dealt with automatically, but at the same time, a
human should be able to intervene and prove certain cases
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manually or provide heuristics to steer the automation. In
this text, we present KATAMARAN: a semi-automated verifi-
cation tool for Sar1L, intended to accommodate these require-
ments. The tool is a semi-automated separation logic verifier
for SAIL in the tradition of SMALLFoOT [23], VERIFAST [13]
and others. We intend to mechanically verify it against an
abstract separation logic interface, making the tool similar to
BeDpROCK [7], HOLFOOT [23], VERISTAR+VERISMALL [2, 21],
VsT-FLoYD [5] and the mechanisation of FEATHERWEIGHT
VERIFAST [14].

In the remaining sections, we give a more detailed moti-
vation of how we want to verify of ISA properties in KaTa-
MARAN (Section 2) and a high-level overview of the design
and current status of the tool and our next plans (Section 3).

Our developments are publicly available on Github [9].

2 Motivation

To understand how we intend KATAMARAN to semi-automat-
ically prove ISA properties, consider the procedure
execute_store: (ds:reg)—unit

in Figure 1, which defines the semantics of a store instruc-
tion in a simple capability machine. The code is written in
USAIL, a subset of SAIL that we briefly describe in Section 3.
Ignoring the contracts in red and blue for now, it reads a
capability from a destination register d, checks its bounds
and permissions, reads a word from a source register s, and
stores it to memory using an omitted write_mem procedure.

The lines in red state the universal contract for instruc-
tions on the machine. The contract is specified in an un-
derlying separation logic, in terms of an abstract predicate
safe:cap+int— P, essentially stating that the instruction
starts out with safe values in all registers and should also
finish with safe register contents. Additionally, under the
rules of the underlying separation logic and the predicate
safe, this contract also implies that the instruction can only
access memory reachable through the register contents and
will respect any registered invariants of the system (see, for
example, Skorstengaard et al. [20] for more details).

To verify the contract, KATAMARAN applies symbolic exe-
cution [4] and automatically computes the blue intermediate
assertions by applying program logic rules. These interme-
diate assertions consist of pure logical facts (the “path condi-
tion”) and spatial separation logic assertions (the “symbolic
heap”).
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{ % r— w,=safe(c,)}

rereg
let: ¢ : cap := call read_reg_cap d in

{( * r— w, xsafe(c,)) *"c=wg Ac=cap(p,bea)}
rereg
let: wa : bool := call write_allowed c.perm in
let: wb : bool := call within_bounds ¢ in

assert (wa && wb) ;;
{...c=cap(p,bea) N\pIWAb<a<el}
let: w : cap + int := call read_reg_word s in
{...c=cap(p,beea) A\pIWAb<a<eAw=w"}
call write_mem c.cursor w ;; call update_pc

{ * r— w, =safe(c;)}
rereg

Figure 1. Contract checking for execute_store d s

Function calls are symbolically executed by instantiating
function contracts. For instance, execute_store uses the un-
derlying function

{safe(cap(p,b,e,—)) xsafe(w) * "b<a<eAp IW}

write_mem a w
{safe(cap(p, b, e, —)) = safe(w)}
The precondition of a function contract usually needs to be
massaged to match the symbolic heap and path condition
when the call is made. This means instantiating quantified
variables, applying logic rules — like the frame rule — and
lemmas for both pure and impure assertions. KATAMARAN
attempts to automatically perform this matching and other-
wise delegates to user-provided heuristics that may tell it to
apply specific lemmas for making the matching go through.

Like other tools, handling of straight-line code is fully
automatic and branches are dealt with by exploring all paths
separately. Easy pure assertions are solved immediately and
others are collected as verification conditions (VCs), to be
proved separately (see Section 3).

We conjecture that KATAMARAN should be able to auto-
matically discharge most uninteresting parts of ISA property
proofs because typical SAIL specifications tend to contain a
lot of mostly straight-line code, (almost) no loops, no higher-
order functions and no dynamic memory allocation. Nev-
ertheless, we plan to provide escape hatches for manually
discharging the obligations that KATAMARAN cannot handle.

3 Overview and Status

Finally, we provide an overview of KATAMARAN’s workflow,
depicted in Figure 2, and its implementation status.

Machine specifications Asa specification language, Kata-
MARAN reuses SAIL which is translated to pSAIL — a subset of
Sar1L deeply-embedded into CoQ. We believe that all of SaIL
is compilable to pSAIL via transformations like monomorphi-
sation and desugaring. pSair’s features and a comparison to
Sa1L are documented in our code repository [9]. For the mo-
ment, the translation is still vaporware and we are writing
examples as pSAIL ASTs directly. One notable difference to
Sa1L’s existing CoQ backend is the deep rather than shallow
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Figure 2. KATAMARAN Overview

embedding which allows for more parts of the verifier to be
implemented in GALLINA rather than LTAc.

ISA property specifications ISA properties are specified
by way of contracts, like the one in Figure 1, which may
use predicates like safe. KATAMARAN treats predicates and
also — like BEDROCK [7] VERISTAR [21] — the assertion logic
abstractly, relying on a generic logic interface that the user
instantiates. This modularity allows the user to choose a
separation logic rich enough to define all the predicates.

Notably absent from SAIL and pSAIL are definitions of what
constitutes memory of a specified machine. KATAMARAN
leaves it up to the user to define a memory model as part
of her logic instantiation and provide primitive access to it.
For instance, the write_mem function can be defined and its
contract proved sound externally in the logic, and given as
inputs to KATAMARAN.

ISA property proofs KATAMARAN’s semi-automatic PSAIL
verifier will attempt to check the desired ISA property. The
user may control the behaviour of the verifier through lem-
mas, for instance to fold/unfold recursive predicates, and
heuristics that use lemmas to guide the spatial reasoning.

If successful, the verifier outputs a list of pure VCs for each
possible execution path. If these can be proven (by existing
CoqQ automation or, if necessary, manual Cog proofs), the
contracts are provable in the underlying logic. If verification
fails, KaATaMARAN will terminate with an error message.

At the time of writing, the symbolic executor is the most
mature component of KATAMARAN, although it is still miss-
ing a soundness proof and some features, like for instance
the automatic application of lemmas via heuristics. Lemmas
can be invoked manually though by a form of ad-hoc ghost
statement in the syntax.

Our next plans for KATAMARAN are to develop it further
and apply it to a number of increasingly challenging appli-
cations. This starts with simple examples, and ends with
verifying capability safety in full-fledged capability machine
ISAs. Intermediate goals notably include properties of artifi-
cial ISAs from the literature [e.g. 20] and a form of memory
safety of Redfin [17] — a specialised ISA for aerospace appli-
cations designed with formal verification in mind.
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