
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Katamaran: semi-automated verification of ISA
specifications

Steven Keuchel
Vrije Universiteit Brussel, Belgium

steven.keuchel@vub.be

Georgy Lukyanov
Newcastle University, United Kingdom

g.lukyanov2@newcastle.ac.uk

Dominique Devriese
Vrije Universiteit Brussel, Belgium

dominique.devriese@vub.be

1 Introduction
An instruction set architecture (ISA) is an abstract speci-
fication of the syntax and semantics of machine code. It
defines an envelope of allowed behaviour for CPU designers
and a set of assumptions that software designers can rely
on. Instead of informal prose and pseudo-code [e.g. 1], rig-
orous, executable formalisations of ISAs disambiguate the
contract and improve testability and support modification,
experimentation and formal study [e.g. 3, 12, 19]. Such for-
malisations are a crucial requirement for formal verification
of both hardware [e.g. 8] and software [e.g. 15].
We are interested in verifying that critical safety guaran-

tees of the ISA are upheld by the semantics of all instructions.
Our long-term goal is to verify security guarantees offered by
ISAs, specifically features like Intel SGX [16], virtual memory
or capability machines [6]. We want to verify these proper-
ties in a form that can be used to reason about programs, as a
way to ultimately verify security properties of real systems.

For achieving this, we take inspiration from recent for-
mulations of capability safety in capability machines and
high-level languages [10, 20, 22, 24]. Contrary to, for example,
Nienhuis et al. [18], such techniques directly enable reason-
ing across encapsulation boundaries. These approaches use
(essentially) a general purpose program logic, and formu-
late capability safety as a universal contract that automati-
cally holds for arbitrary programs. The universal contract
expresses guarantees provided by the machine and can be
used for manually verifying trusted programs that interact
with untrusted programs. We believe that this approach gen-
eralises well beyond capability safety.
However, proving such results about a language or ISA

currently requires a lot of manual reasoning. For example,
an in-progress Coq formalisation of capability safety for
a simple capability machine with 19 instructions requires
about 17kloc of proofs [11]. Real ISAs can be much larger,
for example 30kloc of Sail specifications for ARMv8.3 [3].
Consequently, scaling up ISA property proofs raises impor-
tant proof engineering challenges. For the verification effort
to scale reasonably in terms of the size and complexity of
the specification and for making it robust to changes, proof
automation is a necessity. Uninteresting parts of the proof
should be dealt with automatically, but at the same time, a
human should be able to intervene and prove certain cases
PL’18, January 01–03, 2018, New York, NY, USA
2018.

manually or provide heuristics to steer the automation. In
this text, we present Katamaran: a semi-automated verifi-
cation tool for Sail, intended to accommodate these require-
ments. The tool is a semi-automated separation logic verifier
for Sail in the tradition of SmallFoot [23], VeriFast [13]
and others. We intend to mechanically verify it against an
abstract separation logic interface, making the tool similar to
Bedrock [7], HOLfoot [23], VeriStar+VeriSmall [2, 21],
Vst-Floyd [5] and the mechanisation of Featherweight
VeriFast [14].

In the remaining sections, we give a more detailed moti-
vation of how we want to verify of ISA properties in Kata-
maran (Section 2) and a high-level overview of the design
and current status of the tool and our next plans (Section 3).

Our developments are publicly available on Github [9].

2 Motivation
To understand how we intend Katamaran to semi-automat-
ically prove ISA properties, consider the procedure

execute_store:(d s:reg)→unit

in Figure 1, which defines the semantics of a store instruc-
tion in a simple capability machine. The code is written in
µSail, a subset of Sail that we briefly describe in Section 3.
Ignoring the contracts in red and blue for now, it reads a
capability from a destination register d, checks its bounds
and permissions, reads a word from a source register s, and
stores it to memory using an omitted write_mem procedure.
The lines in red state the universal contract for instruc-

tions on the machine. The contract is specified in an un-
derlying separation logic, in terms of an abstract predicate
safe:cap+int→ P, essentially stating that the instruction
starts out with safe values in all registers and should also
finish with safe register contents. Additionally, under the
rules of the underlying separation logic and the predicate
safe, this contract also implies that the instruction can only
access memory reachable through the register contents and
will respect any registered invariants of the system (see, for
example, Skorstengaard et al. [20] for more details).
To verify the contract, Katamaran applies symbolic exe-

cution [4] and automatically computes the blue intermediate
assertions by applying program logic rules. These interme-
diate assertions consist of pure logical facts (the “path condi-
tion”) and spatial separation logic assertions (the “symbolic
heap”).

1

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

PL’18, January 01–03, 2018, New York, NY, USA Steven Keuchel, Georgy Lukyanov, and Dominique Devriese

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

{ ∗
𝑟 ∈reg

𝑟 ↦→ 𝑤𝑟 ∗ safe(𝑐𝑟)}

let: c : cap := call read_reg_cap d in
{(∗

𝑟 ∈reg
𝑟 ↦→ 𝑤𝑟 ∗ safe(𝑐𝑟)) ∗ ⌜𝑐 = 𝑤𝑑 ∧ 𝑐 = cap(𝑝,𝑏, 𝑒, 𝑎)⌝}

let: wa : bool := call write_allowed c.perm in
let: wb : bool := call within_bounds c in
assert (wa && wb) ;;

{. . . 𝑐 = cap(𝑝,𝑏, 𝑒, 𝑎) ∧ 𝑝 ⊒ W ∧ 𝑏 ≤ 𝑎 < 𝑒⌝}
let: w : cap + int := call read_reg_word s in

{. . . 𝑐 = cap(𝑝,𝑏, 𝑒, 𝑎) ∧ 𝑝 ⊒ W ∧ 𝑏 ≤ 𝑎 < 𝑒 ∧𝑤 = 𝑤𝑠 ⌝}
call write_mem c.cursor w ;; call update_pc

{ ∗
𝑟 ∈reg

𝑟 ↦→ 𝑤𝑟 ∗ safe(𝑐𝑟)}

Figure 1. Contract checking for execute_store d s

Function calls are symbolically executed by instantiating
function contracts. For instance, execute_store uses the un-
derlying function

{safe(cap(𝑝, 𝑏, 𝑒,−)) ∗ safe(𝑤) ∗ ⌜𝑏 ≤ 𝑎 < 𝑒 ∧ 𝑝 ⊒ W⌝}
write_mem a w

{safe(cap(𝑝, 𝑏, 𝑒,−)) ∗ safe(𝑤)}
The precondition of a function contract usually needs to be
massaged to match the symbolic heap and path condition
when the call is made. This means instantiating quantified
variables, applying logic rules – like the frame rule – and
lemmas for both pure and impure assertions. Katamaran
attempts to automatically perform this matching and other-
wise delegates to user-provided heuristics that may tell it to
apply specific lemmas for making the matching go through.
Like other tools, handling of straight-line code is fully

automatic and branches are dealt with by exploring all paths
separately. Easy pure assertions are solved immediately and
others are collected as verification conditions (VCs), to be
proved separately (see Section 3).
We conjecture that Katamaran should be able to auto-

matically discharge most uninteresting parts of ISA property
proofs because typical Sail specifications tend to contain a
lot of mostly straight-line code, (almost) no loops, no higher-
order functions and no dynamic memory allocation. Nev-
ertheless, we plan to provide escape hatches for manually
discharging the obligations that Katamaran cannot handle.

3 Overview and Status
Finally, we provide an overview of Katamaran’s workflow,
depicted in Figure 2, and its implementation status.

Machine specifications As a specification language,Kata-
maran reuses Sail which is translated to µSail – a subset of
Sail deeply-embedded into Coq. We believe that all of Sail
is compilable to µSail via transformations like monomorphi-
sation and desugaring. µSail’s features and a comparison to
Sail are documented in our code repository [9]. For the mo-
ment, the translation is still vaporware and we are writing
examples as µSail ASTs directly. One notable difference to
Sail’s existing Coq backend is the deep rather than shallow

Soundness Proof ISA Property ProofLogic Instance

Semi-automatic Verifier

Pure VCs

Abstract Predicates

Lemmas

Heuristics

Contracts

Coq automationManual Proofs

Sail Coq

SuccessFailure
Error Report

ISA Spec (Sail) ISA Spec (μSail AST)Katamaran
 Tool

GeneratedUser InputGeneric
Figure 2. Katamaran Overview

embedding which allows for more parts of the verifier to be
implemented in Gallina rather than Ltac.

ISA property specifications ISA properties are specified
by way of contracts, like the one in Figure 1, which may
use predicates like safe. Katamaran treats predicates and
also – like Bedrock [7] VeriStar [21] – the assertion logic
abstractly, relying on a generic logic interface that the user
instantiates. This modularity allows the user to choose a
separation logic rich enough to define all the predicates.

Notably absent from Sail and µSail are definitions of what
constitutes memory of a specified machine. Katamaran
leaves it up to the user to define a memory model as part
of her logic instantiation and provide primitive access to it.
For instance, the write_mem function can be defined and its
contract proved sound externally in the logic, and given as
inputs to Katamaran.

ISA property proofs Katamaran’s semi-automatic µSail
verifier will attempt to check the desired ISA property. The
user may control the behaviour of the verifier through lem-
mas, for instance to fold/unfold recursive predicates, and
heuristics that use lemmas to guide the spatial reasoning.

If successful, the verifier outputs a list of pure VCs for each
possible execution path. If these can be proven (by existing
Coq automation or, if necessary, manual Coq proofs), the
contracts are provable in the underlying logic. If verification
fails, Katamaran will terminate with an error message.

At the time of writing, the symbolic executor is the most
mature component of Katamaran, although it is still miss-
ing a soundness proof and some features, like for instance
the automatic application of lemmas via heuristics. Lemmas
can be invoked manually though by a form of ad-hoc ghost
statement in the syntax.
Our next plans for Katamaran are to develop it further

and apply it to a number of increasingly challenging appli-
cations. This starts with simple examples, and ends with
verifying capability safety in full-fledged capability machine
ISAs. Intermediate goals notably include properties of artifi-
cial ISAs from the literature [e.g. 20] and a form of memory
safety of Redfin [17] — a specialised ISA for aerospace appli-
cations designed with formal verification in mind.

2

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Katamaran PL’18, January 01–03, 2018, New York, NY, USA

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

References
[1] AMD. 2019. AMD64 Architecture Programmer’s Manual Volume 3:

General-Purpose and System Instructions. https://www.amd.com/
system/files/TechDocs/24594.pdf

[2] Andrew W. Appel. 2011. VeriSmall: Verified Smallfoot Shape Analysis.
In Certified Programs and Proofs. Springer Berlin Heidelberg, 231–246.

[3] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,
Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Was-
sell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krish-
naswami, and Peter Sewell. 2019. ISA Semantics for ARMv8-a, RISC-v,
and CHERI-MIPS. Proceedings of the ACM on Programming Languages
3, POPL (Jan. 2019), 71:1–71:31. https://doi.org/10.1145/3290384

[4] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Sym-
bolic Execution with Separation Logic. In Programming Languages and
Systems. Springer Berlin Heidelberg, 52–68.

[5] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and
Andrew W. Appel. 2018. VST-Floyd: A Separation Logic Tool to Verify
Correctness of C Programs. Journal of Automated Reasoning 61, 1 (June
2018), 367–422. https://doi.org/10.1007/s10817-018-9457-5

[6] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. 1994.
Hardware Support for Fast Capability-Based Addressing (ASPLOS VI).
ACM. https://doi.org/10.1145/195473.195579

[7] Adam Chlipala. 2011. Mostly-automated Verification of Low-level
Programs in Computational Separation Logic. SIGPLAN Not. 46, 6
(June 2011), 234–245. https://doi.org/10.1145/1993316.1993526

[8] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,
Adam Chlipala, and Arvind. 2017. Kami: A Platform for High-Level
Parametric Hardware Specification and Its Modular Verification. Pro-
ceedings of the ACM on Programming Languages 1, ICFP (Aug. 2017),
24:1–24:30. https://doi.org/10.1145/3110268

[9] Katamaran Developers. 2020. Katamaran Code Repository. https:
//github.com/skeuchel/katamaran.

[10] Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Rea-
soning about Object Capabilities Using Logical Relations and Effect
Parametricity. In European Symposium on Security and Privacy. IEEE.
https://doi.org/10.1109/EuroSP.2016.22

[11] Aïna Linn Georges, Alix Trieu, and Lars Birkedal. [n.d.]. Mechanized
Reasoning about a CapabilityMachine. https://cs.au.dk/~birke/papers/
iris-capabilities-prisc-conf.pdf Principles of Secure Compilation, 2020.

[12] Shilpi Goel, Warren A. Hunt, and Matt Kaufmann. 2017. Engineering
a Formal, Executable X86 ISA Simulator for Software Verification. In
Provably Correct Systems. Springer International Publishing. https:
//doi.org/10.1007/978-3-319-48628-4_8

[13] Bart Jacobs, Jan Smans, and Frank Piessens. 2010. A Quick Tour
of the VeriFast Program Verifier. In Programming Languages and
Systems. Lecture Notes in Computer Science, Vol. 6461. Springer Berlin
Heidelberg, 304–311.

[14] Bart Jacobs, Frédéric Vogels, and Frank Piessens. 2015. Featherweight
VeriFast. Logical Methods in Computer Science Volume 11, Issue 3 (Sept.
2015). https://doi.org/10.2168/LMCS-11(3:19)2015

[15] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (2009), 107–115.

[16] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution
(HASP ’13). ACM. https://doi.org/10.1145/2487726.2488368

[17] Andrey Mokhov, Georgy Lukyanov, and Jakob Lechner. 2019. For-
mal Verification of Spacecraft Control Programs (Experience Report)
(Haskell ’19). ACM. https://doi.org/10.1145/3331545.3342593

[18] Kyndylan Nienhuis, Alexandre Joannou, Anthony Fox, Michael Roe,
Thomas Bauereiss, Brian Campbell, Matthew Naylor, Robert M Norton,
SimonWMoore, Peter G Neumann, et al. 2019. Rigorous engineering for
hardware security: formal modelling and proof in the CHERI design and
implementation process. Technical Report. University of Cambridge,

Computer Laboratory. Accepted for publication at IEEE S&P 2020.
[19] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David

Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and
Ali Zaidi. 2016. End-to-End Verification of Processors with ISA-Formal.
In Computer Aided Verification (Lecture Notes in Computer Science).
Springer International Publishing, 42–58. https://doi.org/10.1007/978-
3-319-41540-6_3

[20] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2017.
Reasoning About a Capability Machine with Local Capabilities -
Provably Safe Stack and Return Pointer Management (without OS
Support). (2017). http://people.cs.kuleuven.be/dominique.devriese/
wellbracketed-locally.pdf In submission.

[21] Gordon Stewart, Lennart Beringer, and Andrew W. Appel. 2012. Ver-
ified Heap Theorem Prover by Paramodulation (ICFP ’12). ACM.
https://doi.org/10.1145/2364527.2364531

[22] David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and Com-
positional Verification of Object Capability Patterns. In OOPSLA. ACM.
https://people.mpi-sws.org/~swasey/papers/ocpl/ocpl-20170418.pdf

[23] Thomas Tuerk. 2009. A Formalisation of Smallfoot in HOL. In Theorem
Proving in Higher Order Logics. Springer Berlin Heidelberg, 469–484.

[24] Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. 2019.
Linear Capabilities for Fully Abstract Compilation of Separation-Logic-
Verified Code. Proc. ACM Program. Lang. ICFP (2019). accepted.

3

https://www.amd.com/system/files/TechDocs/24594.pdf
https://www.amd.com/system/files/TechDocs/24594.pdf
https://doi.org/10.1145/3290384
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/195473.195579
https://doi.org/10.1145/1993316.1993526
https://doi.org/10.1145/3110268
https://github.com/skeuchel/katamaran
https://github.com/skeuchel/katamaran
https://doi.org/10.1109/EuroSP.2016.22
https://cs.au.dk/~birke/papers/iris-capabilities-prisc-conf.pdf
https://cs.au.dk/~birke/papers/iris-capabilities-prisc-conf.pdf
https://doi.org/10.1007/978-3-319-48628-4_8
https://doi.org/10.1007/978-3-319-48628-4_8
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/3331545.3342593
https://doi.org/10.1007/978-3-319-41540-6_3
https://doi.org/10.1007/978-3-319-41540-6_3
http://people.cs.kuleuven.be/dominique.devriese/wellbracketed-locally.pdf
http://people.cs.kuleuven.be/dominique.devriese/wellbracketed-locally.pdf
https://doi.org/10.1145/2364527.2364531
https://people.mpi-sws.org/~swasey/papers/ocpl/ocpl-20170418.pdf

	1 Introduction
	2 Motivation
	3 Overview and Status
	References

