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Abstract—Where ISA specifications used to be defined in
long prose documents, we have recently seen progress on
formal and executable ISA specifications. However, for now,
formal specifications provide only a functional specification
of the ISA, without specifying the ISA’s security guarantees.
In this paper, we present a novel, general approach to
specify an ISA’s security guarantee in a way that (1) can
be semi-automatically validated against the ISA semantics,
producing a mechanically verifiable proof, (2) supports in-
formal and formal reasoning about security-critical software
in the presence of adversarial code. Our approach is based
on the use of universal contracts: software contracts that
express bounds on the authority of arbitrary untrusted code
on the ISA. We semi-automatically verify these contracts
against existing ISA semantics implemented in Sail using our
Katamaran tool: a verified, semi-automatic separation logic
verifier for Sail. For now, in this paper, we can demonstrate
our approach for MinimalCaps: a simplified custom-built
capability machine ISA. However, we believe our approach
has the potential to redefine the formalization of ISA security
guarantees and we will sketch our vision and plans.

Index Terms—ISA security, semi-automatic verification, ca-
pability machines

1. Introduction

An instruction set architecture (ISA) is a specification
of the syntax and semantics of machine code. It serves
as a contract between software and hardware designers.
Traditionally ISAs are specified informally in prose in
long architecture manuals. These specification are impre-
cise, omit details, and offer no way to test/verify ad-
vertised guarantees which is critical when talking about
security features. The recent trend is to provide formal
and executable specifications [1, 4, 8, 9, 13, 23] of ISAs
for disambiguation, testability, experimentation and formal
study. For instance, Sail [1] is a domain-specific language
for the specification of ISAs which is accompanied by
a tool that can produce emulators, documentation and
proof assistant definitions from a Sail specification. Sail
has been adopted by the RISC-V Foundation for the
official formal specification of RISC-V, and is used for the
development of the CHERI extensions [30]. Such formal
specifications are bare necessities for formally verifying
hardware (processors) and software (compilers, programs
written in assembly).

The functional specification of the semantics is not
enough. We also need meta-theoretical statements of the

guarantees that programmers rely on. These are tradition-
ally also in prose, but they should be made formal as well,
so that they can be used for reasoning about security-
critical code and validating ISA extensions. Some recent
proposals for formalizing ISA security properties have
focused on making ISA extensions explicit about side-
channel leakage [10, 14]. However, this work specifies
nothing about the behavior of instructions that might be
added in new versions or concrete instantiations of the
ISA, making them unsuitable for validating security of
proposed ISA extensions or for reasoning about security-
critical code for an unspecified implementation of the ISA.
Other work has focused specifically on security guarantees
of capability machines (see below) [19] but has remained
fundamentally incomplete (protection domain crossings
are out of scope).

We propose to formalize ISA security guarantees in
the form of universal contracts, which have already been
applied for formalizing capability-safety of high-level lan-
guages [7, 27, 28] but also assembly languages [12, 26,
29]. Essentially, the idea is to formulate ISA security guar-
antees as a contract that applies to arbitrary – including
untrusted – code. The contract expresses the restrictions
that the programming language enforces on untrusted
programs. The universal contracts are formalized using
separation logic, an extension of Hoare logic that allows
reasoning about programs that use shared mutable data
structures, such as the heap [24]. Furthermore, separation
logic can be used for sequential programs, as well as
concurrent programs.

For now, universal contracts have only been formalized
and proven for expressing capability safety of simplified
capability machine ISAs and this has required significant
effort [12, 26, 29]. In this paper, we propose universal
contracts as a more general approach that can capture
security guarantees of different security primitives. Addi-
tionally, we propose Katamaran, a tool that can be used to
validate universal contracts against the Sail-implemented
operational semantics of ISAs (or their extensions) as
implemented in Sail. The tool is based on a compositional
separation logic for µSAIL (a core calculus for Sail) which
can be used to define a universal contract for the ISA
semantics. It semi-automatically verifies such a contract
using a form of symbolic execution, based on a limited
amount of user input. This input includes contracts for
functions used internally to define the operational seman-
tics and manually-proven helper lemmas that can be used
to explain non-trivial reasoning steps to Katamaran. The
semi-automation is crucial to make our approach scale
to realistic ISAs and to facilitate adapting ISA security



proofs when the ISA changes. To increase trustworthiness,
Katamaran is implemented in the Coq proof assistant and
comes with a mechanically-verified soundness proof and
a sound implementation of the underlying Sail program
logic based on Iris [15].

In this paper, we report on our work-in-progress de-
velopment of the approach and a first demonstration of
its application to concrete ISAs. Specifically, Katamaran
is currently functional (but the soundness proof is unfin-
ished) and we have finished a proof of capability-safety
of MinimalCaps (a minimalistic capability machine ISA),
publicly available on GitHub [6]. In a next step, we will
extend the approach to minimalistic ISAs with Trusted
Execution Environments (TEEs), protection rings and vir-
tual memory. We will present our approach by presenting
MinimalCaps (Section 2), Katamaran (Section 3) and the
formalization and verification of the MinimalCaps security
guarantees (Section 4). Finally, in Section 5, we will
discuss our plans to apply the approach to more general
and realistic ISAs and ultimately gain more confidence in
the security of realistic processors and systems.

2. The MinimalCaps Capability Machine

Capability machines are a special type of processor
that offer capabilities, which are essentially pointers that
carry a range of authority and permissions. An example of
a mature capability machine ISA extension (or family of
extensions) is CHERI [30]. Conceptually, capabilities are
tokens that carry authority to access memory or an object.
When capabilities represent software defined authority,
like invoking objects or closures, they are referred to as
object capabilities. Capabilities can be represented as a
quadruple, (p, b, e, a), consisting of the permission of the
capability, the begin address, end address and a cursor. The
permissions available on the MinimalCaps machine are
currently: O, the null permission, R, the read permission
and RW , the read and write permission. Fig. 1 shows the
range of authority of a capability is [b, e] and the cursor a
denotes what memory location the capability is currently
pointing at.

We will introduce capability safety using the capability
machine we have developed so far for a first case study,
called MinimalCaps. It contains a minimal subset of in-
structions from CHERI-RISC-V [30], including branch-
ing, jumping and arithmetic instructions. The possible
values that can be stored in general-purpose registers

Figure 1. Concept of a capability

(GPRs) are integers and capabilities. For simplicity, we
restrict the MinimalCaps machine’s memory to only con-
tain integers, thus capabilities can only reside in registers.
Additionally, MinimalCaps does not yet offer a form of
object capabilities. We intend to remove both limitations
in the near future.

The security guarantee we have formulated for our
capability machine is capability safety. Our specification
of capability safety is based on that of [7, 11, 12, 27, 28].
The capability safety property is defined in terms of the
values available on the capability machine. We’ve split
up capability safety into two logical relations, one that is
specific to capabilities and one that works on other values
as well, such as integers. Fig. 2 shows the logical relation
that handles capability only values, Vc, and the logical
relation handling all values, V . As one would expect, the
case for capability values in V is defined in terms of Vc.

These logical relations express the authority that is
represented by a value or capability, in the form of sep-
aration logic predicates that must hold for safely passing
it to untrusted code. The definition says that memory
capabilities are safe to pass to an adversary when the
addressable locations are owned by an invariant that al-
lows arbitrary integers. Note that this definition assumes
a form of shared invariants, as available in Iris, indicated
by a box. For more expressive capability machines, the
definition is complicated further by the presence of object
capabilities and the ability to store capabilities in memory,
but we refer to existing work for more explanations about
that. In terms of these logical relations, the ISA security
guarantee (capability safety) states that every instruction
will produce safe values in the registers when it is invoked
with safe values (see Section 3). By the rules of the
program logic, this contract additionally implies that the
machine will only use authority that it has access to
through the values in the registers.

3. Katamaran

Verifying that security properties are upheld by the
semantics is a serious endeavour and currently requires a
lot of manual reasoning. For instance, the Coq formali-
sation of Georges et al.’s [12] capability safety proof for
a simple capability machine with 19 instructions requires
about 17kLOC. Real ISAs can of course be much larger.
Consequently, scaling up verification of ISA properties
raises important proof engineering challenges. Further-
more, if the ISA specification changes, i.e. due to updates
or entirely new features, or simply for experimentation,
the proofs have to be updated as well. For manual proofs,
this can result in a significant amount of work.

In a nutshell, proof automation is mission critical for
the verification effort to scale reasonably in terms of the

Vc(c)


Vc(O, –, –, –) , True

Vc(R, b, e, –) , ∗a∈[b,e] ∃n, a 7→ n

Vc(RW, b, e, –) , ∗a∈[b,e] ∃n, a 7→ n

V(w)
{
V(z) , True z is an integer
V(c) , Vc(c) c is a capability
Figure 2. Logical relations for capability safety



size and complexity of the specification of the instructions
set and of the specification of the security guarantee
itself, and for proofs to be robust due to changes in the
specification.

Proof automation means, that uninteresting or repeti-
tive parts of the proof are dealt with fully automatically
by means of a tool, library, script, etc.. Ideally, a human
should be able to help steer the automation by providing
heuristics, and she should also be able to intervene directly
and prove certain cases manually where full automation
fails. In other words, we want verification to be semi-
automatic.

To this end, we are developing Katamaran [17], our
own semi-automatic separation logic verifier. Katamaran
works with µSAIL, a new core calculus for Sail, deeply
embedded in the Coq proof assistant, offering many of
Sail’s features. For the time being we perform the trans-
lation manually, but in the future we want to scale the
language up and compile Sail to µSAIL automatically.

Like Sail, we also leave the definition of memory
out of the functional specification and require a (user-
provided) runtime system to define what constitutes the
machine’s memory and provide access to it. This is done
in Katamaran with foreign functions, i.e. functions that
are only declared with their signatures and are callable
from µSAIL code, but are implemented in Coq. Further-
more, µSAIL allows the invocation of lemmas (sometimes
referred to as ghost statements), which instruct the verifier
to take a non-trivial proof step that is verified separately.

The security properties are specified by means of
separation logic-based contracts consisting of pre- and
post-conditions for all functions, including foreign ones.
For this Katamaran contains its own deeply embedded
assertion language.

Verifying that functions adhere to their contracts is
done via preconditioned forward symbolic execution [2,
3] of the function bodies. During the execution, Kata-
maran tries to discharge proof obligations automatically
and otherwise leaves residual verification conditions for
the user. Currently, we require that all spatial, i.e. related
to registers and memory, proof obligations are dealt with
automatically, potentially with help of the user in terms
of ghost statements. The produced residual verification
conditions will be in first-order predicate logic which the
user can prove with the full proof automation that Coq
provides.

A question that arises is in which sense the generated
verification conditions are sufficient to verify the function
contracts. The user does not have to take the output of
the symbolic executor at face value: Katamaran comes
with soundness proofs. The structure is depicted in Fig. 3.
The contracts of both kinds of functions and the code of

Figure 3. Structure of Katamaran

the µSAIL functions are inputs to the symbolic executor
from which it produces verification conditions. A first
(work-in-progress) soundness proof connects this to an
axiomatic program logic: given a proof of the verification
conditions, the function bodies are also verifiable in the
program logic.

The program logic consists of separation logic-based
Hoare triples. We assign meaning to these triples using
the Iris separation logic framework [15] and verify that
the triples hold. This requires user-provided proofs that
foreign functions adhere to their contracts and that lemmas
used in ghost statements are sound. We kept the axiomatic
program logic separate from its instantiation using Iris
and in theory other logics than Iris can be used. However,
we provide the Iris model as the default choice with full
(and finished) soundness proofs and hooks for the user to
extend it.

A last adequacy proof connects the Iris triples to the
operational semantics: every triple that holds semantically
is partially correct. For our purposes, partial correctness
is sufficient; we assume it is verified separately that the
machine cannot get stuck.

4. Verifying MinimalCaps’ Security Guaran-
tees

We will now describe our approach for our simpli-
fied custom-built capability machine ISA, for which the
semantics are specified in Sail. We have performed a
manual translation of the Sail specification to µSAIL,
which is straightforward and most definitions look iden-
tical (without the ghost statements we have added in the
µSAIL code). For the remainder of this section we will
focus on the machine invariant we have defined for our
MinimalCaps machine and verify that it holds.

An example of a function is the write mem function,
which takes two arguments, a capability and a value to be
written to memory. The value will be written to the address
denoted by the cursor of the capability. The contract for
this figure can be found in Fig. 4, together with the
contracts for other functions that we will use in this
section. These checks are critical to the capability safety
property of the MinimalCaps machine and the machine
will go into a failed state when a check fails. The actual
write to memory is done by a foreign function, called
wM , that takes an address and value to be written to
memory. wM is provided by the Sail standard library for
the Sail specification and in the runtime system for its
µSAIL counterpart.

The contracts for individual instructions require the
machine invariant as a precondition and upon succesful
execution of the instruction, the machine invariant will
still hold. Our program logic contains points-to predicates
for registers, r 7→ v, describing a single register, named
r, with contents v. The machine invariant is defined over
the values of all registers (including the program counter
special purpose register) and asserts that the values in
these registers are safe:

∃c.pc 7→ c ∗ Vc(c) ∗ (∀r ∈ GPR.∃w.r 7→ w ∗ V(w))

This machine invariant is also upheld by the fetch-decode-
execute loop. Note that this statement of capability safety



is simpler than related work [12, 26, 29] because of the
lack of object capabilities, but we will strengthen it when
we increase the expressiveness of the ISA.

For other internal and external functions the contracts
are more specific to what each function does. Consider the
contract for the internal function read mem , which reads
the value in memory denoted by the cursor of the given
capability. This contract requires that we know that the
given capability is safe and after executing the read mem
function we know that the capability is still safe and that
the read value is safe as well:

{{V(c) }} read mem c {{ v.V(v) ∗ V(c) }}

We use the common notation used for Hoare triples for
the result value of a statement or function, i.e. v for the
result of read mem .

To give you an idea of how these contracts are verified
using Katamaran, Fig. 5 shows the µSAIL implementation
of MinimalCaps’ store instruction. This instruction takes
3 arguments, a register with the value to be written to
memory, a register containing the capability to be used
for writing to memory and an immediate value to add to
the cursor of the capability (i.e. the contents of hv will be
written to cursor + immediate, where the cursor is part
of the capability in lv). The returned boolean indicates
to the fetch-decode-execute loop that the machine should
continue executing.

The first two arguments of the store instruction are
GPRs and thus their possible values are limited to the
available GPRs of the ISA. A new capability c is derived
from base cap with the immediate added to the cursor
and this capability will be used to perform the write to
memory of the word w in hv.

Next we use a few lemmas that will modify the pre-
condition so that the contract of write mem is respected.
For simplicity we will assume that lv = R0, hv = R1 and
ignore the non-relevant parts of the precondition for this
discussion.

The first lemma, specialize safe to cap, specializes
the V predicate for base cap to a Vc predicate. This is no
problem because at this point we are certain that base cap
is a capability. The move cursor lemma will generate
a Vc predicate based on the base cap capability for a
capability that differs only in the cursor field (the second
argument). Remember that capability safety requires that
all addresses between [begin, end] are owned by the capa-
bility and the values pointed to by these addresses should
be safe, it doesn’t mention the cursor of the capability.

{{ r 7→ w }} read reg r {{ v. v = w ∗ r 7→ w }}
{{ r 7→ w }} read reg cap r {{ c. w = c ∗ r 7→ w }}
{{Vc(c) }}write mem c v {{Vc(c) }}

{{ pc 7→ c ∗ Vc(c) }} update pc {{ ∃c.pc 7→ c ∗ Vc(c) }}
{{V(c) }} specialize safe to cap c {{Vc(c) }}
{{Vc(c) }}move cursor c c′ {{Vc(c) ∗ Vc(c′) }}
{{Vc(c) }} lift csafe c {{V(c) }}

Figure 4. Contracts for functions and lemmas used in exec sd (r is used
for registers, v and w for values and c for capabilities)

Figure 5. Simplified version of exec sd implementation with annotations
in double curly brackets

The final lemma, lift csafe, simply lifts a Vc predicate
to a V predicate. This is required to uphold the machine
invariant, which requires a V predicate for the contents
pointed to by the register denoted by lv.

The write mem function will check that the cursor
of the capability is within bounds and has the write
permission. If this is not the case, the machine will go
into a failed state for attempting an illegal write operation.
The update pc function is quite simple and as one would
expect utilizes the move cursor lemma to generate a Vc
predicate for the updated pc.

Arriving at the end of the implementation of the
store instruction we can verify that its contract holds, i.e.
the machine invariant is preserved when executing this
instruction. By specifying similar contracts for the other
instructions, and the fetch-decode-execute loop, we can
conclude that the capability safety property holds for the
MinimalCaps machine. This is apparent from the machine
invariant because all capabilities the machine has access
to must respect the capability safety property.

5. Future Work

The MinimalCaps case study demonstrates a working
minimal ISA that allows for further experimentation with
universal contracts. In the near future we will extend
MinimalCaps to be able to hold capabilities in memory,
add instructions for capability inspection and modification,
as well as object capabilities. For the former two, we
expect only slight modifications to be required to verify
that the capability safety property still holds, but object
capabilities necessarily complicate the statement of capa-
bility safety a bit.

Katamaran. Since proof automation is key, we want to
lower the proof burden on the user further. We aim to
reduce the need to add certain ghost statements/lemmas,
which could be mitigated by making Katamaran aware of
certain properties of separation logic predicates like V .
For instance, for some of the instructions, we currently
need to duplicate predicates – via a lemma – because they
are consumed by a function call without being produced.
For predicates that are persistent [16], this duplication
is automatically fine and we intend to make Katamaran



aware of such predicates and take care of the duplication
automatically. We also intend to add support for precise
predicates [21], which will reduce some of the branching
that currently happens in Katamaran.

It is widely recognized that using separating implica-
tion (magic wand) in program verification is convenient
and can lead to shorter contracts and proofs. Alas, adding
the magic wand quickly leads to undecidability [5] and
consequently many verifiers, including Katamaran, do not
implement support for it. We want to investigate symbolic
execution with limited forms of seperating conjunction
and implication [18, 22, 25] to benefit from the conve-
nience.

Universal Contracts. The focus in this paper is on the
capability safety guarantee of the MinimalCaps machine,
formalized with universal contracts. Our aim is to gen-
eralize universal contracts so that they are applicable to
more realistic ISAs. To this end we will explore three
directions: different security primitives, larger ISA sizes
and complex semantic features.

The different security primitives we will focus on are
capability machines, which we have presented in this
paper, a machine with trusted execution environments
similar to Sancus [20] and a machine with protection rings
and virtual memory. For each of these security primitives
we will develop a minimal ISA at first and formalize
security guarantees for these minimal ISAs, demonstrating
that universal contracts are applicable beyond the setting
of capability machines.

We intend to scale up the number of instructions of the
ISAs we take under consideration, to bring them closer to
the size of realistic ISAs. The ISAs can then no longer be
considered minimal and it will be infeasible to manually
translate Sail semantics to µSAIL. We will also need to
limit the required amount of annotations to a minimum,
i.e. we want to reduce the number of ghost functions
required, to keep the proof effort focused on the interesting
cases. Increasing the ISA sizes will thus demonstrate the
viability of our approach to semi-automate the required
proofs.

Complex semantic features like concurrency, interrupts
or micro-architectural behavior are orthogonal to the size
of the ISA. We separate concerns by first focusing on
increasing the size of the ISAs in number of instructions
and adding these complex semantic features at a later
stage. Taking different complex semantic features into
account ensures that our approach must be generalized
and will not be limited to those complex features we
consider. Specifying universal contracts in such a richer
semantic setting requires careful consideration. Features
like concurrency can impact the formulation of security
properties of ISAs but could also create new ways that
the property could be broken in the semantics. Fortunately,
Katamaran supports different choices for the underlying
program logic and the current default choice is based on
Iris [15], a powerful framework for higher-order concur-
rent separation logic, offering features like guarded recur-
sion and atomic invariants which have been developed for
reasoning about complex semantic features of high-level
programming languages.

Combining these three directions should result in a
generalized universal contracts approach, for which we

will have demonstrated various interesting security guar-
antees for ISAs with different security primitives, a vast
number of instructions and complex semantic features.
Our next step is then to apply our approach to realistic
ISAs. A mature capability machine extension like CHERI
[30], which has been instantiated for MIPS and RISC-V,
is worth exploring and formulating security properties for.
An advantage of considering for example CHERI-RISC-
V is that a Sail specification has already been developed
and is publicly available. Another viable path to take is to
consider other publicly available Sail specifications that
offer non-capability security primitives, for example the
ISA semantics for RISC-V, specified in Sail [1], which
has officially been adopted by the RISC-V Foundation.
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